6,231 research outputs found

    Neural adaptive sequential Monte Carlo

    Get PDF
    Sequential Monte Carlo (SMC), or particle filtering, is a popular class of methods for sampling from an intractable target distribution using a sequence of simpler intermediate distributions. Like other importance sampling-based methods, performance is critically dependent on the proposal distribution: a bad proposal can lead to arbitrarily inaccurate estimates of the target distribution. This paper presents a new method for automatically adapting the proposal using an approximation of the Kullback-Leibler divergence between the true posterior and the proposal distribution. The method is very flexible, applicable to any parameterized proposal distribution and it supports online and batch variants. We use the new framework to adapt powerful proposal distributions with rich parameterizations based upon neural networks leading to Neural Adaptive Sequential Monte Carlo (NASMC). Experiments indicate that NASMC significantly improves inference in a non-linear state space model outperforming adaptive proposal methods including the Extended Kalman and Unscented Particle Filters. Experiments also indicate that improved inference translates into improved parameter learning when NASMC is used as a subroutine of Particle Marginal Metropolis Hastings. Finally we show that NASMC is able to train a latent variable recurrent neural network (LV-RNN) achieving results that compete with the state-of-the-art for polymorphic music modelling. NASMC can be seen as bridging the gap between adaptive SMC methods and the recent work in scalable, black-box variational inference

    Streaming sparse Gaussian process approximations

    Get PDF
    Sparse pseudo-point approximations for Gaussian process (GP) models provide a suite of methods that support deployment of GPs in the large data regime and enable analytic intractabilities to be sidestepped. However, the field lacks a principled method to handle streaming data in which both the posterior distribution over function values and the hyperparameter estimates are updated in an online fashion. The small number of existing approaches either use suboptimal hand-crafted heuristics for hyperparameter learning, or suffer from catastrophic forgetting or slow updating when new data arrive. This paper develops a new principled framework for deploying Gaussian process probabilistic models in the streaming setting, providing methods for learning hyperparameters and optimising pseudo-input locations. The proposed framework is assessed using synthetic and real-world datasets

    The Multivariate Generalised von Mises distribution: Inference and applications

    Get PDF
    Circular variables arise in a multitude of data-modelling contexts ranging from robotics to the social sciences, but they have been largely overlooked by the machine learning community. This paper partially redresses this imbalance by extending some standard probabilistic modelling tools to the circular domain. First we introduce a new multivariate distribution over circular variables, called the multivariate Generalised von Mises (mGvM) distribution. This distribution can be constructed by restricting and renormalising a general multivariate Gaussian distribution to the unit hyper-torus. Previously proposed multivariate circular distributions are shown to be special cases of this construction. Second, we introduce a new probabilistic model for circular regression, that is inspired by Gaussian Processes, and a method for probabilistic principal component analysis with circular hidden variables. These models can leverage standard modelling tools (e.g. covariance functions and methods for automatic relevance determination). Third, we show that the posterior distribution in these models is a mGvM distribution which enables development of an efficient variational free-energy scheme for performing approximate inference and approximate maximum-likelihood learning.AKWN thanks CAPES grant BEX 9407-11-1. JF thanks the Danish Council for Independent Research grant 0602- 02909B. RET thanks EPSRC grants EP/L000776/1 and EP/M026957/1

    Stochastic expectation propagation

    Get PDF
    Expectation propagation (EP) is a deterministic approximation algorithm that is often used to perform approximate Bayesian parameter learning. EP approximates the full intractable posterior distribution through a set of local approximations that are iteratively refined for each datapoint. EP can offer analytic and computational advantages over other approximations, such as Variational Inference (VI), and is the method of choice for a number of models. The local nature of EP appears to make it an ideal candidate for performing Bayesian learning on large models in large-scale dataset settings. However, EP has a crucial limitation in this context: the number of approximating factors needs to increase with the number of data-points, N, which often entails a prohibitively large memory overhead. This paper presents an extension to EP, called stochastic expectation propagation (SEP), that maintains a global posterior approximation (like VI) but updates it in a local way (like EP). Experiments on a number of canonical learning problems using synthetic and real-world datasets indicate that SEP performs almost as well as full EP, but reduces the memory consumption by a factor of NN. SEP is therefore ideally suited to performing approximate Bayesian learning in the large model, large dataset setting

    A generative model for natural sounds based on latent force modelling

    Get PDF
    Generative models based on subband amplitude envelopes of natural sounds have resulted in convincing synthesis, showing subband amplitude modulation to be a crucial component of auditory perception. Probabilistic latent variable analysis can be particularly insightful, but existing approaches don’t incorporate prior knowledge about the physical behaviour of amplitude envelopes, such as exponential decay or feedback. We use latent force modelling, a probabilistic learning paradigm that encodes physical knowledge into Gaussian process regression, to model correlation across spectral subband envelopes. We augment the standard latent force model approach by explicitly modelling dependencies across multiple time steps. Incorporating this prior knowledge strengthens the interpretation of the latent functions as the source that generated the signal. We examine this interpretation via an experiment showing that sounds generated by sampling from our probabilistic model are perceived to be more realistic than those generated by comparative models based on nonnegative matrix factorisation, even in cases where our model is outperformed from a reconstruction error perspective

    Bursty bulk flow turbulence as a source of energetic particles to the outer radiation belt

    Get PDF
    We report observations of a Bursty Bulk Flow (BBF) penetrating close to the outer edge of the radiation belt. The turbulent BBF braking region is characterized by ion velocity fluctuations, magnetic field (B) variations, and intense electric fields (E). In this event, energetic (>100 keV) electron and ion fluxes are appreciably enhanced. Importantly, fluctuations in energetic electrons and ions suggest local energization. Using correlation distances and other observed characteristics of turbulent E, test-particle simulations support local energization by E that favors higher-energy electrons and leads to an enhanced energetic shoulder and tail in the electron distributions. The energetic shoulder and tail could be amplified to MeV energies by adiabatic transport into the radiation belt where |B| is higher. This analysis suggests that turbulence generated by BBFs can, in part, supply energetic particles to the outer radiation belt and that turbulence can be a significant contributor to particle acceleration
    • …
    corecore